Trending...
- DivX Unveils New Educational Blog Series to Simplify MKV to MP4 Video Conversion
- GXCYPX Analyzes South America's Emerging Digital Asset Market Dynamics
- Her Magic Mushroom Memoir Launches as a Binge-Worthy Novel-to-Podcast Experience
This breakthrough project will leverage nanotechnologies to improve heat transfer rates, higher complexity of internal design and inclusion of sensing and data transfer capabilities for condition and structural health monitoring and process control
PORTO SALVO, Portugal - nvtip -- Metal Additive Manufacturing (AM) technologies versatility makes them most suitable for producing from unique parts up to full series production. Yet, even the mostly used Metal AM (MAM) technology, Powder Bed Fusion (PBF), is not capable of going beyond single materials, and even the range of standard alloys is rather small. The MULTI-FUN project aims to address those shortcomings in two ways. First, by improving performance and efficiency in metal additive manufacturing through the integration of multi-functionalities based on novel active materials and the development of new structural materials for Wire Arc Additive Manufacturing (WAAM), including high strength aluminium alloys and low alloyed steel grades. And secondly by enabling multi-material design in geometrically complex 3D parts without being hindered by size.
The project focuses on Metal Additive Manufacturing by applying combinations of different materials, combined with the most appropriate AM technology for the deposition, to maximize the benefits. Wire and powder based directed energy deposition (DED) and material jetting are employed in new AM equipment combining different AM technologies with tailored software. The inclusion of nano-materials allows the integration of novel and breakthrough features, such as heat sink materials with the highest thermal conductivity, a high degree of integral design that makes it possible to embed electrical conductors in complex shaped metal structures, and the addition of sensing and data transfer capabilities to the equipment and software development. In addition, the integration of tailored optical fibres will enable bringing advanced thorough sensing capabilities to the manufactured parts to perform Structural Health Monitoring (SHM).
An ambitious project to broaden the scope of usage for metal additive manufacturing
The project has a total of four science and technology objectives. The first objective pertains to the development of five new materials customized for additive manufacturing, with a minimum of three of them using nanotechnology. This will allow for the creation of new products by maximizing thermal conductivity, minimizing electrical conductivity and/or improving wear resistance of metals. As a result of this objective, the development of new products is expected thanks to the advanced structural metals and corresponding active material solutions for innovative multiple functionalities. The second addresses new processes and it entails the development of Additive Manufacturing equipment and software to produce the requested material compositions during the layer build-up. In total, at least 10 new material combinations applying 5 new materials will be shown by the 7 demonstrators for different applications. The expected result is an innovative additive manufacturing equipment that integrates several additive manufacturing technologies working in parallel.
More on nvtip.com
The third science and technology objective aims to manufacture and evaluate 7 physical
demonstrators with multi-material design and integrated multi-functionalities, for 3 use cases (structural parts, molds, test equipment), addressing 4 different markets (automotive, aviation, space and production industry). The expected end result is related to new methods and it will contribute to the development of new knowledge on increased efficiency of parts & molds due to integrated, multimaterial-based functions. The last objective relates to the constant assessment and improvement through a feedback loop of the reduction of environmental and economic impact, by evaluating additive manufacturing materials, hardware, process strategy and demonstrator design. The expected key result from this objective relates to new standards and it will enhance knowledge and
contribute to standards and support regulatory bodies adapting to multi-material additive
manufacturing.
The expected impact will be felt mani-fold. The defined KPIs fall into three main groups, including:
Project partners
This three-year project brings together a total of twenty-one partners from eight countries – Austria, Switzerland, Germany, Spain, United Kingdom, Poland, Portugal and Belgium. sets a clear focus on market-creating innovation, developing advanced materials and equipment for Additive Manufacturing of multi-material parts. Leading experts in AM process & equipment manufacturing (from SMEs, IND, RTOs and UNIV) will fully cover the physical integration of these advanced materials into metallic substrates.
Consortium members include:
Austria: LKR Leichtmetallkompetenzzentrum Ranshofen GmbH (www.ait.ac.at/en/lkr); voestalpine Metal Forming GmbH (https://www.voestalpine.com/group/en/divisions/metal-forming/); Inocon Technologie GmbH (https://www.inocon.at/); RHP Technology GmbH (https://www.rhp-technology.com/en); Peak Technology GmbH (https://www.peaktechnology.at/en/); Alpex Technologies GmbH (https://www.alpex-tec.com/de/willkommen-bei-alpex.html); AVL List GmbH (https://www.avl.com/)and RUAG Space GmbH (https://www.ruag.com/en). Belgium: European Federation for Welding, Joining and Cutting (https://www.ewf.be/). Germany: Deutsches Zentrum Fuer Luft – Und Raumfahrt EV, Institute of Materials Research (https://www.dlr.de/wf/en); Fraunhofer Gesellschaft Zur Foerderung der Angewandten Forschung E.V. (https://www.fraunhofer.de/); MIGAL.CO GmbH (https://www.migal.co/english/home/) and EDAG Engineering GmbH (https://www.edag-engineering.de/). Poland: INPHOTECH SP ZOO (https://inphotech.pl/). Portugal: Instituto de Soldadura e Qualidade – ISQ (https://www.isq.pt/). Spain: Fundation BCMaterials – Basque Centre for Materials, Applications and Nanostructures (https://www.bcmaterials.net/); LORTEK S COOP (http://www.lortek.es/) and Aerotecnic Metallic SL (https://www.aerotecnic.es/es/).
More on nvtip.com
Switzerland: Aluwag AG (https://www.aluwag.ch/). United Kingdom: Cranfield University (https://www.cranfield.ac.uk/) and WAAM3D Limited (https://waam3d.com/).
The MULTI-FUN project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862617.
About the European Federation for Welding, Joining and Cutting
EWF is a pioneer in implementing a harmonized qualification and certification system for joining professionals. Through European projects EWF has been innovating in training methodologies and involved in the development of new technologies and uses for joining and additive manufacturing. Through its member organisations, EWF has established a firm link to the local industry, providing knowledge and training as well as participating in research initiatives that address the most pressing questions and challenges in the field of joining technologies.
More info at: www.multif-fun.eu
The project focuses on Metal Additive Manufacturing by applying combinations of different materials, combined with the most appropriate AM technology for the deposition, to maximize the benefits. Wire and powder based directed energy deposition (DED) and material jetting are employed in new AM equipment combining different AM technologies with tailored software. The inclusion of nano-materials allows the integration of novel and breakthrough features, such as heat sink materials with the highest thermal conductivity, a high degree of integral design that makes it possible to embed electrical conductors in complex shaped metal structures, and the addition of sensing and data transfer capabilities to the equipment and software development. In addition, the integration of tailored optical fibres will enable bringing advanced thorough sensing capabilities to the manufactured parts to perform Structural Health Monitoring (SHM).
An ambitious project to broaden the scope of usage for metal additive manufacturing
The project has a total of four science and technology objectives. The first objective pertains to the development of five new materials customized for additive manufacturing, with a minimum of three of them using nanotechnology. This will allow for the creation of new products by maximizing thermal conductivity, minimizing electrical conductivity and/or improving wear resistance of metals. As a result of this objective, the development of new products is expected thanks to the advanced structural metals and corresponding active material solutions for innovative multiple functionalities. The second addresses new processes and it entails the development of Additive Manufacturing equipment and software to produce the requested material compositions during the layer build-up. In total, at least 10 new material combinations applying 5 new materials will be shown by the 7 demonstrators for different applications. The expected result is an innovative additive manufacturing equipment that integrates several additive manufacturing technologies working in parallel.
More on nvtip.com
- CCHR: Involuntary Commitment Is Eugenics Repackaged as "Mental Health Care"
- Phinge Explains The Core Safety Principals Of Netverse, Its Patented App-less Platform & Technology Accessed Only Though Its Patented Phones & Devices
- Q2 2025 Industry Impact Report Underscores Semiconductor Expansion, Talent Development and Sustainability Milestones
- 84 Ethiopian Churches Change Signboards to Shincheonji Church of Jesus
- BTXSGG Outlines Four-Pillar Framework to Enhance Digital Asset Security and Compliance
The third science and technology objective aims to manufacture and evaluate 7 physical
demonstrators with multi-material design and integrated multi-functionalities, for 3 use cases (structural parts, molds, test equipment), addressing 4 different markets (automotive, aviation, space and production industry). The expected end result is related to new methods and it will contribute to the development of new knowledge on increased efficiency of parts & molds due to integrated, multimaterial-based functions. The last objective relates to the constant assessment and improvement through a feedback loop of the reduction of environmental and economic impact, by evaluating additive manufacturing materials, hardware, process strategy and demonstrator design. The expected key result from this objective relates to new standards and it will enhance knowledge and
contribute to standards and support regulatory bodies adapting to multi-material additive
manufacturing.
The expected impact will be felt mani-fold. The defined KPIs fall into three main groups, including:
- First, the improvement of the efficiency, quality and reliability of the product by at least 40%;
- Secondly a better usage of raw materials and resources with reduced environmental impact and lowering costs by 35% as demonstrated by Life Cycle Assessment; and
- Lastly, it will provide new opportunities & business for SMEs across Europe, namely for the key players in advanced materials research in Additive Manufacturing.
Project partners
This three-year project brings together a total of twenty-one partners from eight countries – Austria, Switzerland, Germany, Spain, United Kingdom, Poland, Portugal and Belgium. sets a clear focus on market-creating innovation, developing advanced materials and equipment for Additive Manufacturing of multi-material parts. Leading experts in AM process & equipment manufacturing (from SMEs, IND, RTOs and UNIV) will fully cover the physical integration of these advanced materials into metallic substrates.
Consortium members include:
Austria: LKR Leichtmetallkompetenzzentrum Ranshofen GmbH (www.ait.ac.at/en/lkr); voestalpine Metal Forming GmbH (https://www.voestalpine.com/group/en/divisions/metal-forming/); Inocon Technologie GmbH (https://www.inocon.at/); RHP Technology GmbH (https://www.rhp-technology.com/en); Peak Technology GmbH (https://www.peaktechnology.at/en/); Alpex Technologies GmbH (https://www.alpex-tec.com/de/willkommen-bei-alpex.html); AVL List GmbH (https://www.avl.com/)and RUAG Space GmbH (https://www.ruag.com/en). Belgium: European Federation for Welding, Joining and Cutting (https://www.ewf.be/). Germany: Deutsches Zentrum Fuer Luft – Und Raumfahrt EV, Institute of Materials Research (https://www.dlr.de/wf/en); Fraunhofer Gesellschaft Zur Foerderung der Angewandten Forschung E.V. (https://www.fraunhofer.de/); MIGAL.CO GmbH (https://www.migal.co/english/home/) and EDAG Engineering GmbH (https://www.edag-engineering.de/). Poland: INPHOTECH SP ZOO (https://inphotech.pl/). Portugal: Instituto de Soldadura e Qualidade – ISQ (https://www.isq.pt/). Spain: Fundation BCMaterials – Basque Centre for Materials, Applications and Nanostructures (https://www.bcmaterials.net/); LORTEK S COOP (http://www.lortek.es/) and Aerotecnic Metallic SL (https://www.aerotecnic.es/es/).
More on nvtip.com
- NJTRX Positions for Next-Generation Asset Trading with U.S. Regulatory Framework
- EliTe Solar Unveils Refreshed Corporate Identity to Mark 20th Anniversary
- BCI Shines at the RE+2025 Energy Expo in Las Vegas
- Poncho Tha Popstar: The West's Next King
- Physician-Turned-Patient Launches Advocacy Campaign to Spotlight Disability Insurance Barriers
Switzerland: Aluwag AG (https://www.aluwag.ch/). United Kingdom: Cranfield University (https://www.cranfield.ac.uk/) and WAAM3D Limited (https://waam3d.com/).
The MULTI-FUN project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862617.
About the European Federation for Welding, Joining and Cutting
EWF is a pioneer in implementing a harmonized qualification and certification system for joining professionals. Through European projects EWF has been innovating in training methodologies and involved in the development of new technologies and uses for joining and additive manufacturing. Through its member organisations, EWF has established a firm link to the local industry, providing knowledge and training as well as participating in research initiatives that address the most pressing questions and challenges in the field of joining technologies.
More info at: www.multif-fun.eu
Source: EWF
0 Comments
Latest on nvtip.com
- "Leading From Day One: The Essential Guide for New Supervisors" Draws from 25+ Years of International Management Experience
- Virtuoso honors Travelex with top award during 2025 Travel Week
- New Slotozilla Project Explores What Happens When the World Goes Silent
- The Two Faces of Charles D. Braun: How the Novel, Posthumously Yours, Came to Life
- 2025 Packaging State of the Industry: U.S. Expands, Canada Maintains Strong Base
- Tiffany Kim PA-C Joins Professional Team at Crovetti Orthopaedics and Sports Medicine in Las Vegas, Nevada
- Counseling Center of New Smyrna Beach Expands Affordable Mental Health Services for Volusia County
- RedThread Tech Consortium Welcomes Ingentis, Showcases Member Insights at HR Tech 2025
- Athena Forge (ATFG) Introduces Advanced Token for Technology-Driven Financial Ecosystem
- Albuquerque's Z-CoiL Footwear Brings All-American Family Business Story to Shark Tank Season Premiere
- Phinge to Offer Its Businesses & Third-Party Platforms Free Management Tools Which Could Replace Their Need For Costly Business Intelligence Products
- NoviSign Sponsoring VARTECH 2025 - the B2B IT channel's #1 event
- Unicorp and BH Group Select Chasing Creative—Palm Coast Agency—to Lead Growth Marketing for The Ritz-Carlton Residences, Hammock Dunes
- Breaking: 50+ runners from 20+ states relay custom 9/11 flag 485 miles from Shanksville through DC to Ground Zero for memorial remembrance run
- SecureMaine 2025 is this October 8th in Portland, Maine
- John Thomas calls for unity and prayer after tragic loss
- Joystick.TV To Celebrate National Video Game Day With Free Tokens
- Where the Miami Dolphins Stand After Week 1
- Which NFL Teams Can Rebound from Week 1? OddsTrader Breaks Down the Biggest Questions
- Apellix Deploys Breakthrough Spray-Painting Drones into Live Service Limited Beta Program Open for Advanced Contractors